26,705 research outputs found

    Finite-volume Hamiltonian method for coupled channel interactions in lattice QCD

    Get PDF
    Within a multi-channel formulation of ππ\pi\pi scattering, we investigate the use of the finite-volume Hamiltonian approach to resolve scattering observables from lattice QCD spectra. The asymptotic matching of the well-known L\"uscher formalism encodes a unique finite-volume spectrum. Nevertheless, in many practical situations, such as coupled-channel systems, it is advantageous to interpolate isolated lattice spectra in order to extract physical scattering parameters. Here we study the use of the Hamiltonian framework as a parameterisation that can be fit directly to lattice spectra. We find that with a modest amount of lattice data, the scattering parameters can be reproduced rather well, with only a minor degree of model dependence.Comment: 25 pages, 16 figure

    Unitary coupled-channels model for three-mesons decays of heavy mesons

    Full text link
    A unitary coupled-channels model is presented for investigating the decays of heavy mesons and excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final state interactions in the decay processes, as required by both the three-body and two-body unitarity conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-model analysis. We apply our coupled-channels model to the three-pions decays of a1(1260), pi2(1670), pi2(2100), and D0 mesons, and show that the Z-diagram mechanisms can contribute to the calculated Dalitz plot distributions by as much as 30% in magnitudes in the regions where f0(600), rho(770), and f2(1270) dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate that the decay amplitudes obtained with the unitary model and the isobar model can be rather different, particularly in the phase that plays a crucial role in extracting the CKM CP-violating phase from the data of B meson decays. Our results indicate that the commonly used isobar model analysis must be extended to account for the final state interactions required by the three-body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic mesons, and signatures of physics beyond the standard model.Comment: 32 pages, 10 figures. Version to appear in PR

    Quartification with T' Flavor

    Get PDF
    In the simplest (non-quiver) unified theories, fermion families are often treated sequentially and a flavor symmetry may act similarly. As an alternative with non-sequential flavor symmetry, we consider a model based on the group (T'*Z_2)_global * [SU(3)^4]_local which combines the predictions of T' flavor symmetry with the features of a unified quiver gauge theory. The model accommodates the relationships between mixing angles separately for neutrinos, and for quarks, which have been previously predicted with T'. This quiver unification theory makes predictions of several additional gauge bosons and bifundamental fermions at the TeV scale.Comment: 8 pages, LaTex; added references and clarifie

    Regge approach to charged-pion photoproduction at invariant energies above 2 GeV

    Get PDF
    A Regge model with absorptive corrections is employed in a global analysis of the world data on positive and negative pion photoproduction for photon energies from 3 to 8 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single polarization observables at -t \leq 2 GeV^2 allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. Differences between our predictions and data in this energy region are systematically examined as possible signals for the presence of excited baryons. We find that the data available for the polarized photon asymmetry show promising resonance signatures at invariant energies around 2 GeV. With regard to differential cross sections the analysis of negative pion photoproduction data, obtained recently at JLab, indicates likewise the presence of resonance structures around 2 GeVComment: misprint in Table 3 corrected; reference adde

    Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons

    Full text link
    We investigate a linear sigma model with global chiral U(2)R×U(2)LU(2)_{R} \times U(2)_{L} symmetry. The mesonic degrees of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The baryonic degrees of freedom are the nucleon, NN, and its chiral partner, N∗N^{*}, which is usually identified with N(1535). The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is not solely generated by the chiral condensate but also by a chirally invariant mass term, m0m_{0}. The presence of (axial-) vector fields modifies the expressions for the axial coupling constants of the nucleon, gANg_{A}^{N}, and its partner, gAN∗g_{A}^{N^{*}}. Using experimental data for the decays N∗→NπN^{*} \to N \pi and a1â†’Ï€Îła_{1} \to\pi\gamma, as well as lattice results for gAN∗g_{A}^{N^{*}} we infer m0∌500m_{0}\sim500 MeV, i.e., an appreciable amount of the nucleon mass originates from sources other than the chiral condensate. We test our model by evaluating the decay N∗→NηN^{*} \to N \eta and the s-wave nucleon-pion scattering lengths a0(±)a_{0}^{(\pm)}.Comment: 16 pages, 2 figures. To appear in Phys. Rev.

    Quark-Hadron Duality and Parity Violating Asymmetry of Electroweak Reactions in the Delta Region

    Full text link
    A dynamical model of electroweak pion production reactions in the Delta(1232) region has been extended to include the neutral current contributions for examining the local Quark-Hadron Duality in neutrino-induced reactions and for investigating how the axial N-Delta form factor can be determined by the parity violating asymmetry of N(\vec{e},e') reactions. We first show that the recent data of (e,e') structure functions F_1 and F_2, which exhibit the Quark-Hadron Duality, are in good agreement with our predictions. For possible future experimental tests, we then predict that the structure functions F_1, F_2, and F_3 for (\nu,e) and (\nu,\nu') processes also show the similar Quark-Hadron Duality. The spin dependent structure functions g_1 and g_2 of (e,e') have also been calculated from our model. It is found that the local Quark-Hadron Duality is not seen in the calculated g_1 and g_2, while our results for g_1 and some polarization observables associated with the exclusive p(\vec{e},e' pi) and \vec{p}(\vec{e},e' pi) reactions are in reasonably good agreement with the recent data. In the investigation of parity violating asymmetry A of N(\vec{e},e') reactions, it is found that the non-resonant contribution is small at the Delta peak and a measurement of A can be used to distinguish two previously determined axial N-Delta transition form factors. The predicted asymmetry A are also compared with the Parton Model predictions for future experimental investigations of Quark-Hadron Duality.Comment: 28 pages, 19 figures v2; figures and references adde

    A path integral approach to the dynamics of a random chain with rigid constraints

    Full text link
    In this work the dynamics of a freely jointed random chain which fluctuates at constant temperature in some viscous medium is studied. The chain is regarded as a system of small particles which perform a brownian motion and are subjected to rigid constraints which forbid the breaking of the chain. For simplicity, all interactions among the particles have been switched off and the number of dimensions has been limited to two. The problem of describing the fluctuations of the chain in the limit in which it becomes a continuous system is solved using a path integral approach, in which the constraints are imposed with the insertion in the path integral of suitable Dirac delta functions. It is shown that the probability distribution of the possible conformations in which the fluctuating chain can be found during its evolution in time coincides with the partition function of a field theory which is a generalization of the nonlinear sigma model in two dimensions. Both the probability distribution and the generating functional of the correlation functions of the positions of the beads are computed explicitly in a semiclassical approximation for a ring-shaped chain.Comment: 36 pages, 2 figures, LaTeX + REVTeX4 + graphicx, minor changes in the text, reference adde

    A longitudinal study of muscle rehabilitation in the lower leg after cast removal using Magnetic Resonance Imaging and strength assessment

    Get PDF
    Acknowledgements We thank the A&E nurses and plaster technicians for identifying suitable patients, the MRI radiographers for performing the scanning, Dr Scott Semple for invaluable help in some of the pilot studies and Mr E. C. Stevenson for constructing the footrest used in the scanner. We are very grateful to the dedicated patients themselves who gave considerable amounts of time to come in for scanning, exercise and assessment during the course of this study.Peer reviewedPublisher PD

    Cavity-enabled high-dimensional quantum key distribution

    Get PDF
    High-dimensional quantum key distribution (QKD) offers the possibility of encoding multiple bits of key on a single entangled photon pair. An experimentally promising approach to realizing this is to use energy–time entanglement. Currently, however, the control of very high-dimensional entangled photons is challenging. We present a simple and experimentally compact approach, which is based on a cavity that allows one to measure two different bases: the time of arrival and another that is approximately mutually unbiased to the arrival time. We quantify the errors in the setup, due both to the approximate nature of the mutually unbiased measurement and as a result of experimental errors. It is shown that the protocol can be adapted using a cut-off so that it is robust against the considered errors, even within the regime of up to 10 bits per photon pair
    • 

    corecore